Molecular interactions between glycopeptide vancomycin and bacterial cell wall peptide analogues.

نویسندگان

  • Bengang Xing
  • Tingting Jiang
  • Xiangyang Wu
  • Roushen Liew
  • Jie Zhou
  • Dawei Zhang
  • Edwin K L Yeow
چکیده

The molecular interactions of the glycopeptide antibiotic vancomycin (Van) with bacterial cell wall analogues N,N'-diacetyl-L-Lys-D-Ala-D-Ala (Ac(2) KdAdA) and N,N'-diacetyl-L-Lys-D-Ala-D-Lac (Ac(2) KdAdL) were investigated in neat water, phosphate buffer and HEPES buffer by using fluorescence correlation spectroscopy (FCS) and molecular dynamics (MD) simulations. The FCS determined dissociation constants (k(d)) show that the intrinsic binding affinity between Van and the drug-sensitive peptide ligand Ac(2)KdAdA remains invariant when the solvent is changed from neat water to either PBS or HEPES buffer; this demonstrates that there are no obvious solvent effects on the association between Van and Ac(2)KdAdA due to the strong intermolecular interaction between the two moieties. When compared to Ac(2)KdAdA, a significantly larger k(d) value was observed for the binding between the drug-resistant peptide ligand Ac(2)KdAdL and Van. Furthermore, the k(d) increased by about 8- to 11-times when the solvent was changed from neat water to 10 mM phosphate/HEPES buffer. The stability of the Ac(2)KdAdL-Van complex was dependent on the concentration of the buffer and k(d) increases as the concentration of either phosphate ions or HEPES increased until an equilibrium was attained. Both FCS and MD simulation studies clearly showed that the components constituting the buffer solution (e.g., phosphate ions and HEPES) are involved in molecular interactions with the binding pocket of Van and they profoundly affect the intrinsic stability of the complex formed between the low-affinity Ac(2)KdAdL and Van. These results could help us to better understand the detailed structure and activity of glycopeptide antibiotic derivatives toward bacterial cell wall peptide analogues, and can further facilitate the development of new drug candidates against drug-resistant bacterial strains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insights into Key Interactions between Vancomycin and Bacterial Cell Wall Structures

Vancomycin is a glycopeptide antibiotic used for the treatment of serious infections by Gram-positive pathogens. Vancomycin inhibits cell wall biosynthesis by targeting the d-Ala-d-Ala terminus of peptidoglycan (PG). The highly cross-linked heptapeptide aglycon structure of vancomycin is the d-Ala-d-Ala binding site. The first residue of vancomycin is N-methyl-leucine, which is crucial for the ...

متن کامل

Vancomycin dimer formation between analogues of bacterial peptidoglycan surfaces probed by force spectroscopy.

Functionalised thiols presenting peptides found in the peptidoglycan of vancomycin-sensitive and -resistant bacteria were synthesised and used to form self-assembled monolayers (SAMs) on gold surfaces. This model bacterial cell-wall surface mimic was used to study binding interactions with vancomycin. Force spectroscopy, using the atomic force microscope (AFM), was used to investigate the speci...

متن کامل

A ligand-mediated dimerization mode for vancomycin.

BACKGROUND Vancomycin and related glycopeptide antibiotics exert their antimicrobial effect by binding to carboxy-terminal peptide targets in the bacterial cell wall and preventing the biosynthesis of peptidoglycan. Bacteria can resist the action of these agents by replacing the peptide targets with depsipeptides. Rational efforts to design new agents effective against resistant bacteria requir...

متن کامل

Different modes of vancomycin and D-alanyl-D-alanine peptidase binding to cell wall peptide and a possible role for the vancomycin resistance protein.

A comparison was made of the binding modes of the bacterial cell wall precursor L-lysyl-D-alanyl-D-alanine to the glycopeptide antibiotic vancomycin and to the D-alanyl-D-alanine-cleaving peptidase of Streptomyces sp. strain R61, a model for cell wall-synthesizing enzymes whose X-ray three-dimensional structure is established. In each of the two pairings (vancomycin with peptide and DD-peptidas...

متن کامل

Structure of ristocetin A in complex with a bacterial cell-wall mimetic. Corrigendum.

Antimicrobial drug resistance is a serious public health problem and the development of new antibiotics has become an important priority. Ristocetin A is a class III glycopeptide antibiotic that is used in the diagnosis of von Willebrand disease and which has served as a lead compound for the development of new antimicrobial therapeutics. The 1.0 A resolution crystal structure of the complex be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry

دوره 17 50  شماره 

صفحات  -

تاریخ انتشار 2011